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Intuition suggests that if the energy of a system is dissipated in anymotion 
and if, under equilibrium or steady-state motion, it has an isolated minimum, 
then the oscillations of the system about the undisturbed motion will damp 
out. 

For a system with a finite number of degrees of freedom this fact can be 
deduced from the results of the paper by E.A. Earbashin and Krasovskil [I]. 
Some verifiable criteria for the dissipation of energy in any motion are 
suggested in [2]. An extension of the results of Barbashin and Krasovskii 
to systems with infinite degrees of freedom is difficult. In the present 
paper we make a number of assumptions on the continuity of the perturbed 
surface, on the velocity and on the total energy of the system, and there- 
fore all the conclusions on the stability which we succeed in obtaining are 
rather conditional in nature. The mentioned restrictions are dictated by 
the method of the proof; it is scarcely possible that we could make further 
definite conclusions on the stability from the consideration of only the 
total energy and its derivative. 

1. Let us consider a rigid body with a cavity partially filled with a 

viscous, incompressible liquid, subject to the action of external forces, 

with potential energy Vl(ql, q2,...). The ideal relations, imposed on the 

body as well as on its coordihates Q (i < 6), are assumed to be holonomic 
and steady-state, while the potential energy of the liquid element is taken 

in the form oW(x,Y,z)d~, where XYZ is the fixed system of rectangular coor- 

dinates and CI is the liquid density. 

If the system is in equilibrium andif V, the potential energy of the 

system, has a ~n~rnurn at the equilibrium position, then the equilibrium is 

stable in the sense of Liapunov [3,4]; in other words, for any arbitrarily 
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small h,o: n,cp(N), we can find h,,,aJ,n, such that, when t = 0 the initial 

values of To2 = qIo2 + . . . + qtio2, of the kinetic energy z',, of the sepa- 

ration N,, and of the deviation A,, satisfy the inequalities 

ro < 4, Tll <%I', N, <&I, AlI >cp (NJ (1.1) 

then,the inequalities 

r < h, T <c', iv <M, A >cp W) (1.2) 

will be satisfied during the whole motion or, at least, until the inequality 

A>a((N), is disturbed, where v(N) is some possible deviation. Let us 

assume that It is not disturbed, i.e. all the latter inequalities are satls- 

fled during the whole motion. 

The derivative of the total energyE with respect to time satisfies 

Equation 
dE 
dt=- s 

aadz 

D 

under the condition that the relative velocity of the liquid equals zero on 

the wetted surface of the cavity, while the stress on the free boundary is 

perpendicular to It and constant. 

Here ip Is the dissipation function of the vlscus liquid, taken In the 

Navier-Stokes form, and D is the region occupied by the liquid. The set of 

States of the system which satisfy inequallties (1.1) will be called the 

region HO, and for inequalities (1.2), the region ,q. 

Let Cp (5, ?J, 2, t) = 0 be the equation of the free surface in the moving 
system of coordinates X?Jz, connected to the rigid body and coinciding with 

the fixed system at the equilibrium position. Also, let the vector 

V(z, ?J, z, i!) represent the field of velocity of the liquid relative to the 
body, with components ~1, v, m along the axes 2, ?J, z and, under the given 

lnltlal conditions 'p. (5, y, 2, 0) = 0, V (x, y, Z, O), qiol q'io let the 

subsequent motion be determined uniquely. 

The set of functions Cp (2, y, Z, t) = 0, U, D,W and the quantities ql,~;, 
will be called a state of the system and will be denoted by M; the Initial 

state will be denoted by M,,, and the initial state corresponding to a null 

field of the relative velocities, by Moo. The relative kinetic energy of 

the liquid will be denoted by [r,. Let us consider the equilibrium surface 

W(X,UJ) = a0 and in Its neighborhood let us Introduce the curvilinear co- 

ordinates by means of the substitutions 

h = h (5, y, 4, v = v (z, y, z), r = W(z, y* 4 

continuous in the neighborhood of w(Z, y, 2) = a0 and allowing of continu- 

ous Inverses. Moreover, let the equation of the wall of cavity S be 

v (z, y, 2) = PO = const, and let the equation of any free surface be 

representable in the form Z - a, = X (h, V, t). Let us Introduce two systems 

of assumptions. 
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Assumption 1.1 will consist of two parts. 

1.1.1) The function x(X,v,t) Is uniformly continuous In X,v for all t> 0; 

I.e. for any b& we can find an &(b&) such that from the inequality 

(h - h')2 + (Y - Y')2 < e (8, M,) 

will follow the inequality X (h, Y, t) - X (h', Y', t)I< 8 for all possible 

pairs (1, v),(x', v') In the region [w(X, y, z) = a,, Inside S] and for 

all t > 0. 

1.1.2) For any b, t+, Moo we can find such a constant y(b,t*,M,,) that 

If at the lnltlal Instant the Inequalities 

1% (A, y, 0) -x' (h.Y, 0) I<r 

K = 2 [(Qi, - qJ2 + (qi, - qiJ”I + Tr’ + \ ” ‘t < T 
D.’ 

are satisfied (where x,qm,q$ correspond to state &, and x’,q,,,‘,q~~ ,...,to 

state M,'), then when t = t* the Inequality 

Is satisfied. 

I E Woo, t*) - E Wo’, t*) I < 8 (4.3) 

Assumption 1.2 also will be composed of two parts. 1.2.1). The function 

x(A,v,t), as well as the components of the vector V(x, ?J, 2, t),are uniformly 

continuous. 

1.2.2) We assume that Inequality (1.3) follows from the Inequality 

v2 (5, y, z, 0) < T, I~@,~,O) -X’(bY,O)I<r, K<T 
Here V' (5, 3, 2, 0) Is the velocity field corresponding to the state M,'. 

T h e o r e m 1.1. Let the potential energy of the system have a mlnl- 

mum at the equilibrium position, and let the region fl not contain the motion 

of the liquid and the rigid body as a whole VE 0, and let assumption 1.1 

be fulfilled; then, 3? + ra+ N"- 0 as t - m. If Instead of assumption 1.1, 

assumption 1.2 Is fulfilled, then P + ra+ tiNa- 0 as t - - and, moreover, 

V2(x,y,z,t)+0 ast--. 

Proof. Let us assume to the contrary that while the conditions of 

the theorem and also the assumption 1.1 are fulfilled, nevertheless 

lim E = E* > Oas t - -. The integral 
00 

converges; consequently, we can find such a sequence of Instants tl,..., 

t *,...f that the sequence 

s G?)kdZ +O for t+m 

Dk 
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By settlng the usual condition V = 0 on the boundary, on the basis of a 

well-known integral inequality [5] we can establish that the sequence 

T, (t, > -0 ast-m 

Let US consider the sequence of "points" elk with "coordinates" 

i ‘/; 

Since the sequence x(b,v,tk) is uniformly bounded (R < n) and uniformly 

continuous, then by Arzel’s theorem we can choose a subsequence u,converging 

to the point U* with coordinates [gi*, qi*, T - c$, : 3d* (h, Y), 0, 0l.B~ vir- 
tue of the continuous dependence of the total energy on the coordinates of 

the point ~1, it follows that 1, (fl*) =:- fi*. 

Let us choose the initial conditions at the point P*. Since by assump- , 
tlonthemotion along which (1) ~0 does not exist, we can find a t*suchthat 

& (p*, 1”) <L;*. By virtue of assumption 1.1.2, for any arbitrarily small 

6 we can-find a number L(6) such that for all 1 > L the inequality 

I,!? (/A;, t*) - Ii (p*, f*)i cc 6, is satisfied, but this contradicts the assump- 

tion that Iinl /!' =- /<* as t - 03. 

The proof under assumption 1.2 differs from the one given only In that 

the point pr will have the coordinates 

From the uniform continuity of the components of vector V and from the 

boundedness of P',, it Is easy to prove the boundedness of u,v,w. Conse- 

quently, we can choose a convergent sequence of functions uk ,v,,w~ and,moi'c- 

over, they will necessarI?y converge to zero. Further the proof is analc- 

gous. 

Thus, when assumption 1.1 or 1.2 and the rest of the conditions of Theo- 

rem are fulfilled, the total energy E - 0 as t -+ a, but hence It follows 

that T + T, $ r2 + A2 - 0 as t - m. 
follows that v(N) --t 0 as t - m and with 

Consequently, 1' + 9 + N2- 0 as t -t m. 

Now let assumption 1.2 be fulfllled, 

city field V2 (a, y, 2, t) ---) 0 as 2 - m 

From the condition A > ($ (N) it 

it also w _ 0 as t - m. 

and we can show that here the velo- 

By virtue of assumption 1.2, for any a,& we can find a Y(6,M,) such that 

from the inequality (X - X')2 {- (2/ - y')" -I- (2 - 2')2 < 7" follows 

IV2 (X, y, 2, t) - V2 (I', y', 2'3 t)I < 6 for all t > 0 and for all points 

lx, y, 4, (x’, y’, z’), lying inside the liquid. If V” (x, y, 2, 1) does not 
vanish when t _ =, then we can find a constant e(M,,) such that for any A > 0 

we can find a point X*, 7J*, z* and an Instant t* > A such that 

V(x*J/*, z*, P))&. 
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Let us take 6 < 1)~ and find A such that when t > Athe separation N does 
not exceed AC . Since the distance from the 'frozen' surfaceW(X, y, 2) =a,,, 
can be taken as the separation, let us do so and let us construct two surfa- 
ces W = C the distance of whose points from the surface W = a, does not 

exceed &v. Let them have Equations 

W (X, y, z) = a, + Au, W (5, y, z) = a, - Au. 

If the surface W = a, intersects the cavity 5' at a non-zero angle, then the 

lower bound of the volume cut out by a small sphere of radius y (when Its 

center Is shifted along the IIupper' surface W = a0 + Aa) from the region 

[I < a, - Aa, inside S], will differ from zero. Let us denote It bym'. 

Hence It follows that the liquid mass which has been scooped up by the small 

sphere of radius y will obviously not be less than am' for any t > A. 

This means that inside the sphere 

(X* - X1)2 + (y* - y’)” + (z* - 2’)2 < r2 

the Inequality v2 (X', Y', Z', t*) > ‘is&, is satisfied and the relative 

kinetic energy of the mass Included in this sphere, T, > '12Wm',which con- 

tradicts the relation T, > T, + 0 as t - -. 

This contradiction proves that V2 (2, Y, 2, t) --, 0 as t - m. 

The assertion which is the converse of Theorem 1.1 Is also valid. 

T h e o r e m 1.2. If V can take negative values In an arbitrarily 

smallneighborhood of the equilibrium position, If the region H does not 

contain the motion of the rigid body and the fluid as a whole, and If one 

of the assumptions 1.1 or 1.2 is fulfilled, then the equlllbrlum Is unstable. 

Proof. The proof Is analogous. LetEo< 0 and let there exist the 
limit E’<O, but all the time let the sta'te M lie In region H. By a slml- 

lar reasoning we get a contradiction. 

2, An analogous problem IS encountered if w = w (X2 -k Y*, z), 
and the change In 4. In a cyclic coordinate system leads to a rotation of 

the system as a rigid body around axis Z. 

Let J be the moment of Inertia of the system around axls Z and let V be 

the potential energy of the system, while k, is the angular momentum of the 

system around this axis. The steady-state rotation Is found from Equation 

W k,,a aJ 
2&-2Jaagl= 

0 (2.1) 

Under the condition that the free surface of the liquid has Equation 

F, = W(xs+ Y2,Z) - 2g (X” + Y2) = a, = const (2.2) 

Let the steady-state motion correspond to zero values of the coordinates 

q1>...3 qm-1 a and let the free surface F1 = cr, Under steady-state motion 
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lnersect the surface of the cavity S such that the normal n,(m)to the sur- 

face F1 = cc at the point m of the line of Intersection with the cavlty,and 
the normal n2 (m)to the surface S everywhere from the angle 8 (m),lylng 

within the limits 56 > 8, > 8 (m) > fll > 0. Also, let the normals nl and 
n, be contlnous and let the value of the constant cc not be an extreme of 

all the values which can be taken by FI In the neighborhood of F1 = cO. 

Under these assumptions we can show [6] that the potential energy of the 

system and Its moment of Inertia around the axis Z under the condition that 

its liquid surface refers to the set (2.2), sre single-valued functions of 

41,.**r 4n-1 which are continuously differentiable up to the second order 

for any h? sufficiently close to the value koa on the steady-state motion. 

Let us denote these functions by V”,J”. 

In [6] It was shown that the functional of the measurement of the poten- 

tial energy 

rI=v+/?2,2/.J 

will have a minimum on the steady-state motion If the quadratic form 

(2.3) 

(where the derivatives are computed for zero values of the coordinates) Is 

a positive-definite form, and that the functional n can take negative values 

If such values can be taken by the quadratic form. Let It be posltlve-defl- 

nite, then Its dlscrlmlnant Is greater than zero and In the neighborhood of 

zero there exists a continuous solution q1 = q!(J?) of Equation (2.1). If 

the quadratic form (2.3) Is positive-definite when A2 = kc2 and if thesasond 

derivatives occurlng In Its coefficients are continuous In the quantities 

PI, then It remains positive-definite If the second derivatives take on 

sufficiently small values for any pi(P). 

If n has a minimum, then the steady-state motion Is stable [7] and for 

any arbitrarily small h,o',n,d,,m(l), we can find such &,,co',nO,dc that if 

at the initial Instant the Inequalities 

ro < &I* T,, < q,‘, N, < n,, k2 - k,2 = 6k” <d, 

A, a cp (NJ (2.4) 

are satisfied, then the Inequalities 

r < h, T, < o', N <n, 6k= < 4, A >cp 0'0 (2.5) 

will be satisfied during the whole motion, if during the whole motion the 

inequality A > 9 (N) IS not upset. Let us assume that It Is not upset. 

Here T1 Is the klnetlc energy of the system relative to the reference system 

rotating around axis Z with a variable angular velocity UJ = k/J. 
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Let x0 and H be regions where inequalities (2.4) and (2.5) are fulfilled 

for a motion corresponding to the value ba, and let Ho' and X' be regions 

corresponding to the steady-state motion qi == qi (&s $ 8k’). If & Is cho- 

sen sufficiently small, then any motion starting in the region He can be 

considered as having started in the region H,' and can be considered as dls- 

turbed around the steady-state motion tj+ (I;'@ ' -I- 6/i2) under the condition that 

I$,' f 6ka is not disturbed. 

Let the system receive a disturbance and let r’,Ti,N’,... be the same 

quantities as in (2.4), but taken for the undisturbed motion qi(ko2 $ 6k2) 
and for the equilibrium surface in this adjacent steady-state motion. Wlth- 

out any change whatsoever In the reasoning presented above, we obtain two 

Theorems. 

T h e o r e m 2.1. If the minimum of II is found by the quadratic form 

(2.3), if the region If does not contain the motion of the rigi.d body and 

the liquid as a whole, differing from the motion Qi (&sz $- 61~')~ and If one 

of assumptions 1.1 or 1.2 is fulfilled, then T,' f r" + N12+ 0 as t - m, 
and in the case assumption 1.2 is fulfilled, moreover, the squared velocity 

V2(3,y,z,t)-0 ast-m. 

T h e 0 r e m 2.2. If with 6k2 = 0, II can take negative values, and if 

with bti2 = 0 there Is no motion of the rigid body,and the liquid as a whole 

lying entirely in the region X, and if one of assumptions 1.1 or 1.2 is 

fulfilled, then the steady-state rotation is unstable. 

3. Let us now proceed to an analysis of the conditions under which 

motion of the rigid body and the liquid as a whole is possible. 

Let a certain polnt of the rigid body (a pole) have the accelerations 

o,,s,,a, along the axes 2, y, Z and let p’,q’,F’ be the components of the 

angular velocity of the body with respect to these axes. If the rigid body 

and the liquid move as a whole, then inside the liquid Equation 
(3, $1 

a, * q”z - f’y -t- p’ (p’x + qly + r’z) - 02x + dW I dx = - dp / dx 

a, + r”x - p”z + q’ (p’x + q’y + r’z) - 02y + iYW I dy = - ap f dy 

a, + p”y - q”x + r’ (p’x + q’y + r’z) - 02y + i3W / dz = - dp / dz 

must necessarily be satisfied, where p (5, yI z, t) is the pressure and 
o2 zz pt2 + 4’2 + I”‘%. By assuming that the mixed second derivatives of 
the pressure with respect to X, ?J, z are continuous and by equating them, 

we get p” = 4” = r” = 0, i.e. the projections of the angular velocity 

onto the moving axes are constant. 

By chasing the axis z along the angular velocity, we get 



*‘sin8 sin rp+O’coscp = 0, 9’ sin fj COS cp - 0‘ sir1 q = 0 

9. cos 8 -j- cp’ = a* 
where ),cp,8 are EuIer angles. 

If e(0) # 0 and this can always be assumed, then Ji* = 8' = 0, 1-e. the 

angular velocity vector has a flxed direction in absolute space [8]. By 

integrating (3.1) we obtain 

--P = w - I/* w2(52 + y") + a_& + a,y + a,2 

In order that the free surface may remain at rest relative to the body 

there must have existed such a constant c' that from the condltlon 

p (X, ?J, 2, 0) = C"th ere followed p (2, ?J, z, t) = h(t) for all Z, Y, 2. 

Let us consider the case of a homogeneous field. 

Let a homogeneous field act on the liqull and let x Y 2 be the coordl- 0, 01 0 

nateg of some point on the rigid body (a pole) in the fixed system, then 

x- X, = Z Cosol- y sin ot, Y - Y, = 2 sill wt + y cos ot 

z --2,-z 

if the fixed axis Z 1s taken parallel to the vector u). 

For a homogeneous f'leld If we take W In the form 

W=AX+BY+CZ 

where A,B,C are constants, we obtain 

-P =A[zcosmt--ysinot+XO]+B[~sin~t+ycos~t+YO]+ 

+ C [z + Z,] - ‘12 69 (9 + ya) + [Xl co.9 ot + Yo” sin ot] -j- 
+ [-Xou sin ot + Y,” cos ot] y + Z,‘-2 (3.2) 

BY denoting the 1nltlaI values of the quantities Al,Bl, cl, Aa, Bg, cs 
by XOtYOtZO, X0”, YQ*‘, &-,“, when t = O we obtain 

- p (2, y, z, 0) = (A + A,) 2 + (B + B,) 9 + (C + cd 2 -‘boa (3” + Y2i 

Assuming the origin of the moving system on the free surface we obtain 

p* = c'. Hence we have 

(C + C2)2 + PO = "laoa (22 + Y") - (A -t- 82)x - (B + &) y 

and when 0 80 we obtain, by substituting into (3.2) 

z, = 1/2C2t2 -t ct -t_ c” 

(A + X,“) cosot + (B + Y,“) sin ot -7 A + As 
- (A $- X0**) sin ot + (23 + Y 6’) cos ot = 23 + Bz 

By solving these Equations we have 
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X0" =(d+.A2)cosot-(B+B2)sinot-A 
Y~“=(A+d2)sin~t+(B+B2)cos~t-B 

X0 = - mm2 (A + A,) cos ot + me2 (B + B2) sin ot - ‘la At* + d’t + A 
Y. = - me2 (A + d*)sin ot - mm4 (B + &) cos cot - 1/sBt2 + B’t + B” 

Using understandable notations these take the form 

X0 = h” sin (ot + cpo) - 1/2dt* + d’t + A” 
Y, = h” cos (ot + cpo) - ‘/&a + B’t + B 

If we take the pole on the instantaneous helical axis when t - 0 relative 

to the system having a translational motion In accordance with the law 

x0 = - ‘/2dta + d’t + d”, yo’= - 1@?t2’+ B’t + B 

2-0) = =j2c2t2 -f- ct $ C” 

(where x,',Y,' ,ZO'are the coordinates of the origin of the system X',Y',Z' 

relative to the fixed system), we obtain ha = 0. 

Hence It follows that in a homogeneous field when 0#0 the pole can 

move such that in the reference system X',Y',Z' the body rotates with con- 

stant angular velocity around the Plxed axis. 

We note that the field of the external forces and the forces of inertia 

in this system is parallel to the rotation axis and is homogeneous. 

Let UJ = 0, then without derogation of generality, we can assume A = E = 0. 

In this case 

X0” = d2$$$, Yo" =B,s 
and, moreover, in this case Z,,** Is arbitrary. By integrating we have 

With respect to the system X"tY",i?'~ translating with axis Z" parallel to 

axis Z and with the origin translating relative to the fixed system in ac- 

cordance with the law 

the body translates in a straight line In accordance with any law. It should 

be noted that the field of the mass forces and the forces of Inertia taken 

from this system, is homogeneous and directed along the straight line on 

which the body moves. This is correct, of course, only for motions In 

which tensile stresses do not arise, i.e. p > 0 for all X, ?J, Z inside 

the liquid and for all t > 0. 
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