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Intuition suggests that 1f the energy of a system is dissipated in any motion
and if, under equilitrium or steady-state motion, 1t has an isclated minimum,
then the oscillations of the system about the undisturbed motion will damp
out.

For a system with a finite number of degrees of freedom this fact can be
deduced from the results of the paper by E.A. Barbashin and Krasovskii [1].
Some verifiable criteria for the dissipation of energy in any motion are
suggested in [2]. An extension of the results of Barbashin and Krasovskll
to systems with infinite degrees of freedom is difficult. In the present
paper we make a number of assumptlons on the continuity of the perturbed
surface, on the velocity and on the total energy of the system, and there-
fore all the conclusions on the stability which we succeed 1in obtalning are
rather conditional in nature. The mentioned restrictions are dictated by
the method of the proof; it 1s scarcely posslible that we could make further
definite conclusions on the stability from the consideration of only the
total energy and its derivative.

1, Let us consider a rigid body with a cavity partially filled with a
viscous, lncompressible liquid, subject to the action of external forces,
with potential energy ¥ {g,, gps...). The ideal relations, imposed on the
body as well as on its coordinates ¢ (i < 6), are assumed to be holonomic
and steady-state, while the potential energy of the liquid element 1s taken
in the form GW(X,Y,Z)dT, where YrZ is the fixed system of rectangular coor-
dinates and ¢ is the liquid density.

If the system is in equilibrium and if ¥, the potential energy of the
system, has a minimum at the equilibrium position, then the equilibrium is
stable in the sense of Liapunov [3,4]; 1in other words, for any arbitrarily
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small h,o0; n,p(¥), we can find hg,0d ,n, such that, when ¢ = O the initial
values of rp? = ¢;,> + ... + ¢uo%, of the kinetic energy 7,, of the sepa-
ration ¥,, and of the deviation 4,, satisfy the inequalities

ro < hy, T, <oy, Ny, < ny, Ay > ¢ (Ny) (1.1)
then,the inequalities
r<hk, To, NIn A9 (1.2)

will be satisfied during the whole motion or, at least, until the inequality
A> q)(AO, is disturbed, where o(¥) is some possible deviation. Let us
assume that it is not disturbed, i.e. all the latter inequalitles are satis-
fied during the whole motilon.

The derivative of the total energy.E'with respect to time satisfies
Equation dE
W=-.Sc1>dr
D
under the condition that the relative veloclity of the liquild equals zero on
the wetted surface of the cavity, while the stress on the free boundary is

perpendicular to it and constant.

Here ¢ i1s the dissipation functlon of the viscus liquid, taken 1n the
Navier-Stokes form, and D 1s the reglon occupled by the liquid. The set of
states of the system which satisfy inequalities (1.1) will be called the
region #,, and for inequalitles (1.2), the region 4.

Let @ (x, ¥, 2, t) = O be the equation of the free surface in the moving
system of coordinates Zyz, connected to the rigid body and coinciding wilth
the fixed system at the equilibrium position. Also, let the vector
V (z, y, z, t) represent the fileld of velocity of the liquid relative to the
body, with components u, v, w along the axes z, ¥, 2z and, under the given
initial conditions @, (2, ¥, 2, 0) = 0, V(z, ¥, 2, 0), Gip» g3 1let the
subsequent motion be determined uniquely.

The set of functions @ (2, ¥, 2, {) = 0, u, v, w and the quantities g,,gi,
will be called a state of the system and will be denoted by ¥; the 1nitial
state will be denoted by ¥,, and the initial state corresponding to a null
fleld of the relative velocities, by My, . The relative kinetic energy of
the liquid will be denoted by Tr' Let us consider the equllibrium surface
w(X,¥,2) = oo and in its neighborhood let us introduce the curvilinear co-
ordinates by means of the substitutions

A= A(x, ¥, 2), v =v(z,y, z), = Wiz, y, 2)

continuous in the neighborhood of VV'Cr,y, Z)== 0y and allowing of continu-
ous inverses. Moreover, let the equation of the wéll of cavity S be

v (z,y, 5) = P, = const, and let the equation of any free surface be
representable in the form T — oy = % (A, v, £). Let us introduce two systems
of assumptions.



Influence of viscosity on the stability of equilibrium 69

Assumption 1.1 will consist of two parts.

1.1.1) The function a(i,v,¢) 1s uniformly continuous in \,v for all ¢> O;
l.e. for any 5,¥, we can find an e(5,¥,) such that from the inequality

(A=A 4+ (v—v)2<e (8, M)

will follow the inequality % (A, v, t) — % (A, v/, £)| <8 for all possible
pairs (x, v),(x’, v') in the region [W (z, y, 2) = &y, inside S] and for
all ¢t > O,

1.1.2) For any b, t*, Moo We can find such a constant y(§,t*,M,,) that
if at the initlal instant the inequalities

[ (A, v, 0) — %" (Av, 0) | <Y
_ ne . .-
K = 2 l(g, — g, + (g — a1 + T,/ + | 0 dr <7
Dy’
are satisfied (where x,g.,gj, correspond to state My, and x’,g,q,qa 5.-.,50
state ¥,’}, then when ¢ = ¢t* the inequality

|E (Mg, t*) — E (My', t*) | < 8 (1.3)
18 satisfied.

Assumption 1.2 also will be composed of two parts. 1.2.1). The function

x{x,v,t), as well as the components of the vector V (z, ¥, 2, f),are uniformly
continuous.

1.2.2) We assume that inequality (1.3) follows from the inequality
Vi (z,y, 2 0 <7, [% (A, v, O) — %" (A, v, 0) | <07, K<y

Here V' (z, y, 2, 0) 1s the velocity field corresponding to the state u,’.

Theorem 1.1. Let the potential energy of the system have a mini-
mum at the equilibrium position, and let the reglon 7 not contain the motion
of the liquid and the rigid body as a whole V= (}, and let assumption 1.1
be fulfilled; then, T + r°+ ¥~ O as ¢t ~ =, If instead of assumption 1.1,
assumption 1.2 is fulfilled, then T + r*+ ¥°~ 0 as ¢t ~ = and, moreover,

V2 (z,y,2,t) -0 ast ~ =.

Proof . Let us assume to the contrary that while the conditions of
the theorem and also the assumption 1.1 are fulfilled, nevertheless
limE = E* >0as ¢t - ». The integral
[o 0]
{§@ava
o D
converges; consequently, we can find such a sequence of instants ¢;,...,

tk, ..., that the sequence

®;dt — 0 for t —» oo
Dy,
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By setting the usual condition V = O on the boundary, on the basis of a
well-known integral inequality [5] we can establish that the sequence
Tr(tk)—'Oast«m

Let us consider the sequence of "points” | with "coordinates"

[qi (t/f)v (fiA(t/,), T—op~ ®(A, v, t). T, (ti), \ Dy dT]

>

—

Ve

Since the sequence n(x,y,tk) 1s uniformly bounded (¥ < n) and uniformly
continuous, then by Arzel's theorem we can choose a subsequence u converging
to the point u* with coordinates |g*, ¢*, T — a, = »* (A, V),(LlU].By vir-
tue of the continuous dependence of the total energy on the coordinates of
the point u, it follows that /5 (W*) — I'*,

Let us choose the initlial conditions at the polnt u*l‘. Since by assump-
tion the motion along which (1) == () does not exist, we can find a t* such that
Lo (u*, t*) < I*. By virtue of assumption 1.1.2, for any arbitrarily small
§ we can find a number [(6) such that for all ] > L the inequallty
| E (u;, %) — I (p*, t*) [ <98, 1s satisfled, but this contradicts the assump-
tion that lim F = % as ¢ - =,

The proof under assumption 1.2 differs from the one given only 1n that
the point y, will have the coordinates

(g0 a7 T — o %oy, ) ute gzt 0w, | O @) dr)
Ly
From the uniform continuity of the components of vector V and from the
boundedness of I,, 1t 1s easy tc prove the boundedness of u,v,w. Conse-
quently, we can choose a convergent csequence of functions y, ,v, ,w, 2nd,morc-
over, they will necessarily converge to zero. Further the proof is analc-

gous.

Thus, when assumption 1.1 or 1.2 and the rest of the conditions of Theo-
rem are fulfilled, the total energy . — ( as ¢ » =, but hence 1t follows
that T 4+ T» + 4+ A* - 0 as ¢ -~ =. From the condition A > @ (N) 1t
follows that o(¥#) - O as ¢ - = and with it also ¥ -~ O as ¢t ~ =.
Consequently, 7 + r® + ¥°~ 0 as ¢t - =,

Now lbet assumption 1.2 be fulfilled, and we can show that here the velo-
city fleld Vi(z, 9, 2,2) — 0 as ¢ ~ =.

By virtue of assumption 1.2, for any 6,¥, we can find a v(8,M,) such that
from the inequality (z — z)* 4- (y — ¥')® + (z — 2')> < 1* follows
V2 (z, y, 2, t) — V(&' 9, 2, )| < for all ¢t > O and for all points
(x, ¥, 2), (z', 4, 2'), lying inside the liquid. If V2 (z, ¥, z, t) does not
vanlsh when ¢ - =, then we can find a constant ¢(#,) such that for any 4> 0
we can find a point z*, y*, z¥ and an instant ¢* > 4 such that

V2 (z*, i*, 2%, 1*) >e.
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Let us take &6 < $¢ and find 4 such that when ¢ > Athe separation ¥ does
not exceed fye . Since the distance from the "frozen" surface W (z, y, z) = a,,
can be taken as the separation, let us do so and let us construct two surfa-
ces W = C the distance of whose points from the surface ¥ = q, does not
exceed ¢y. Let them have Equations

Wiz, y, 2) = ay + Ao, Wz, y, 2) = oy — Ac.

If the surface W = g, intersects the cavity § at a non-zero angle, then the
lower bound of the volume cut out by a small sphere of radius vy (when its
center 1s shifted along the "upper" surface ¥ = o, + Aa) from the region
(W< 0, — Aa, 1nside S], will differ from zero. Let us denote it bym’'.
Hence it follows that the liquld mass which has been scooped up by th;e small
sphere of radius y will obviously not be less than om’ for any ¢ > 4.

Thls means that 1nside the sphere
(2 — ) + G —y) + (=2 <7
the inequality VZ*(z’, ¥y, z’, 1¥) ©> 1/,e, 1s satisfled and the relative

kinetlc energy of the mass included in this sphere, I'e > l/,8am’, which con-
tradicts the relation I, > T — 0 as t - =,

This contradiction proves that V2 (x, ¥, z,t) - 0 as ¢t » =,
The assertion which 1s the converse of Theorem 1,1 is also valld.

Theorem 1.2. If V can take negative values in an arblitrarlly
small neighborhood of the equilibrium position, if the region y does not
contain the motion of the rigid body and the fluid as a whole, and if one
of the assumptions 1.1 or 1.2 is fulfilled, then the equilibrium is unstable.

Proof . The proof is analogous. Let E'0 < 0 and let there exist the
. .
1limit £ <0, but all the time let the state ¥ lie in region ¥. By a simi-
lar reasoning we get a contradiction.

2, An analogous problem is encountered if W = W (X® + Y32, Z),
and the change in ¢, in a cyclic coordinate system leads to & rotation of
the system as a rigid body around axis Z.

Let J be the moment of inertia of the system around axis Z and let V be
the potentilal energy of the system, while k, ls the angular momentum of the
system around this axis. The steady-state rotation is found from Equation

v ke oJ
under the condition that the free surface of the liquid has Equatlon
7
Fy=W (X2 + Y, 2) — 50 (X2 +¥?) = o = const (2.2)

Let the steady-state motion correspond to zero values of the coordinates
gis-++s gu-1» aNnd let the free surface F; = a4 under steady-state motion
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inersect the surface of the cavity § such that the normal nl(nﬁ to the sur-
face F; = a, &t the point m of the line of intersection wlth the cavity,and
the normal n, (m)to the surface S everywhere from the angle § (m), lying
within the limits & > 0, >0 (m) > 6, > 0. Also, let the normals n, and
n, be continous and let the value of the constant g, not be an extreme of
all the values which can be taken by F, in the neighborhood of F, = q,.
Under these assumptlions we can show [6] that the potential energy of the
system and 1ts moment of inertla around the axis Z under the condition that
its liquid surface refers to the set (2.2), are single-valued functions of
g1s-++s Gn-1 Which are continuously differentiable up to the second order
for any #° sufficlently close to the value koa on the steady-state motion.
Let us denote these functions by V’,J”".

In [6] it was shown that the functional of the measurement of the poten-
tlal energy

O=V+k2/J

will have a minimum on the steady-state motion if the quadratic form

n—1
" P Tyn o ket ‘
81" = ijZ:I qiq; aqiaqj [V + JL”-] (2.3)

(where the derivatives are computed for zero values of the coordinates) 1is

a positive-definite form, and that the functional I can take negative valiues
if such values can be taken by the quadratic form. Let it be positive-defl-
nite, then its discriminant is greater than zero and in the neighborhood of
zero there exists a continuous solution g, = g,(¥*) of Equation (2.1). If
the quadratlic form (2.3) 1s positive-definite when x* = kba and if these:zond
derivatives occuring in its coefficlents are continuous in the quantities
g, then it remains positive-definite if the second derivatives take on
sufficlently small values for any g, (x*).

If 1 has a minimum, then the steady-state motlion 1s stable [7) and for
any arbitrarily small h,0’,n,do,p(¥), we can find such A, ,0, ' ,ng,do that 1f
at the initial instant the inequalities

ro<hgy T <0y's Nony, K — kg = 0k* < d,
By > ¢ (Ny) (2.4)
are satisfied, then the inequalities
r<h, T,<d, N<n, 8<dy, A>o®lN) (2.5

will be satisfied during the whole motion, 1if during the whole motilon the
inequality A ;>(p(ﬂo is not upset. Let us assume that it 1s not upset.
Here T, 1s the kinetic energy of the system relative to the reference system
rotating around axis Z with a varilable angular veloclty w = hAJ.
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Let y, and ¥ be regions where inequalities (2.4) and (2.5) are fulfilled
for a motion corresponding to the value k%, and let Ho’ and g7’ be regions
corresponding to the steady-state motion q; == ¢; (k2 4 8Kk?). If g, is cho-
sen sufficliently small, then any motion starting in the region #; can be
considered as having started in the region Z,’ and can be considered as dis-
turbed around the steady-state motion ¢; (£,% - 0A%) under the condition that
key? -+ 8k* 1s not disturbed,

Let the system recelve a disturbance and let r',7/,¥’,... be the same
quantities as in (2.4), but taken for the undisturbed motion ¢; (k,* + 8k?)
and for the equilibrium surface in thls adjacent steady-state motion. With-
out any change whatsoever 1n the reasoning presented above, we obtaln two
Theorems.

Theorem 2.1. If the minimum of I is found by the quadratic form
(2.3), if the reglon ¥ does not contain the motion of the rigid body and
the liquid as a whole, differing from the motion ¢; (k,> 4+ 0A?), and if one
of assumptions 1.1 or 1.2 is fulfilled, then T -+ r'? + N2 0 as ¢ - =,
and in the case assumption 1.2 is fulfilled, moreover, the squared veloclty
Vi(z,y, 2 8) -0 as ¢t~ =.

Theorem 2,2, If with %% = 0, II can take negative values, and if
with 8%° = 0 there 1s no motlon of the rigid body, and the liquid as a whole
lying entirely in the region y, and if one of assumptions 1.1 or 1.2 is
fulfilled, then the steady-state rotation is unstable.

3., Let us now proceed to an analysis of the conditions under which
motion of the rigid body and the liquid as a whole is possible.

Let a certain point of the rigiad body (a pole) have the accelerations
a, say,a. 2long the axes X, ¥, 2 and let p',q’,r' be the components of the
angular velocity of the body with respect to these axes, If the rigid body

and the liquid move as a whole, then inside the liquid Equation (3.1)
ax +qz—r'yrp (pz+qy+r)—oex+oW/oz=—0p/ox
ay +r'z—p'z+q¢d Pz ¢y +ry —ey+oW/dy=—3adp/dy
a; +p'y—qg'z+r (pzt+qgy+r)—ey+oW/oz=—0dp/oz

must necessarily be satisfied, where p (35 Y Z,t) is the pressure and
0® = p'? + ¢'* 4+ r’%. By assuming that the mixed second derivatives of
the pressure with respect to I, ¥, Z are continuous and by equating them,
we get p’ == g7 = r" = 0,1.e. the projections of the angular velocity
onto the moving axes are constant.

By chosing the axls z along the angular veloclty, we get
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P'sin® sin @ +0'cosg =0, Psin® cosgp —8 sing =0
Y cosh -+ @ = g,

where y,p,0 are Euler angles.

If 8{0) £ 0 and this can always be assumed, then y* = g- = 0, i.e. the
angular veloclty vector has a fixed directlon in sbsolute space [8]. By
integrating (3.1) we obtain

—p=W—=" 02"+ ¢) + axz + ayy + .2

In order that the free surface may remaln at rest relative to the body
there must have existed such a constant ¢’ that from the condition
p{z,y, 2z, 0) = c¢"there followed p (z, ¥, 2, 1) = A (t) for all Z, ¥, 2.

Let us consider the case of a homogeneous fleld.
Let a homogeneous field act on the liquii and let X,,¥;,Z, be the coordl-
nateg of some point on the rigld body {a pole) in the fixed system, then
X — X, = z cos ot — y sin of, Y — Y, = zsin ot + y cos wif
Z —Zy =2
if the fixed axls Z is taken parallel to the vector w.

For a homogeneous fleld 1f we take ¥ 1n the form
W = AX -+ BY 4+-CZ
where 4,B,0 are constants, we obtain
— p = A[zcos ot — y sin @t + Xo] + B[z sin ot + y cos ot 4 Yo} +
+Clz4 Z;] — Y 0* (2* 4 y?) + [ X, cos ot 4 Y, sin of] +
+ [—Xo sinot + Y, cos otjy + Zyz (3.2)

By denoting the initial values of the quantities Ay, By, Cy, 4g, By, Cy
by X(),YO,ZO, Xu", YQ“, Z,", when ¢ = O we obtain

- P(«'ny, Z70):= (A+Az)x-*-(B+B2)y+(c+02)2~1/202($‘+y2)

Assuming the origin of the moving system on the free surface we obtain
Do = c¢’. Hence we have

(€4 Co)z+po="/0" (" + ") — (4 + A)s— (B4 By)y
and when @ 10 we obtain, by substituting into (3.2)

Zy =1 Cat® + C't - C"
(A4 + Xo")cosawt + (B4 Y,") sin ot = 4 4 4,
—(A+ X)) sin ot + (B+ Y,") cos ot = B + B,y

By solving these Equaticns we have
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Xo" = (A + 4;) cos ot — (B + B;) sin ot — A4
Yy = (4 + Aj)sinet + (B+ B,) cos ot — B
Xo=—02(4+ A;) cos ot + 02 (B+ By)sin ot — 1/, At - 4"t + A
Yo=— a2 (44 Ap)sinowt — 0% (B 4 By) cos ot — /4Bt + B't + B”
Using understandable notations these take the form
Xo = A°sin (0t + @g) — /3 4t2 -+ A't + A"
Y, =A° cos (ot + o) — /;Bt? 4 B't + B”

If we take the pole on the instantaneous helical axis when ¢ = 0 relative
to the system having a translational motion in accordance with the law

Xo = —1 A8 + At + A", Yy = —1,B* + Bt + B
Zo, s 1/262t2 + C,t + C”

(where X,’ ,Y,’ ,Z," are the coordinates of the origin of the system x’,r’,z’
relative to the fixed system), we obtain A° = O.

Hence 1t follows that in a homogeneous fileld when (Djj:O the pole can
move such that in the reference system X‘,Y’,Z’ the body rotates with con-
stant angular velocity around the fixed axls.

We note that the field of the external forces and the forces of inertia
in this system 1s parallel to the rotation axis and is homogeneous.

Let w = 0, then without derogation of generallty, we can assume 4 = 5§ = O.
In this case

“ C + Zy” . C+Zy
X' =hgre Yo' =B oo,
and, moreover, in this case Z,** 1s arbitrary. By Integrating we have
- AQC 2 i ’ ” A2Z0
Yo=grar tATT4+ g
ByC 2 BsZy

Yo=m2—+B,t+B”+0+02
With respect to the system X”,Y”,2” translating with axis Z“ parallel to
axis Z and with the origin translating relative to the flxed system in ac-
cordance with the law

” AiC 12 ’ " ”
Xo=m§‘+At+A, Y=

B,C 1

m-z——+B’t+B”, Z{)”:O

the body translates in a stralght line in accordance with any law., It should
be noted that the fleld of the mass forces and the forces of lnertla taken
from this system, is homogeneous and directed along the straight line on
which the body moves. This is correct, of course, only for motions 1n
which tensile stresses do not arise, l.e. p > 0 for all =z, Y, Z 1inslide

the liquid and for all ¢ > O.
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